
I 

~. 
- I  

’ i , ‘  
\ 

. 

4 1 . )  

c 

STUDY FOR THE INDICIAL LOAD ..EFFECTS ON 
MULTISTAGE SPACE VEHICLE SYSTEMS 

Linearized Indicial Aerodynamic Forces on Bodies of 
in Supersonic Flow 

ANNUAL SUMMARY REPORT - Volume I 
21 June 1963 - 20 August 1964 

Contract No. NAS8-11012 
Control No. TP3-81150 & S-1 (1F) 

CPB 16-603-63 & S-1 

MRI Project No. 2715-P 

I 
, H 1 (ACCESSION N 6 5  NUMB-) 21726 - (THRU) I 

o ti,’ / 
L A 
> 

For 

National Aeronautics and Space Administration 
Procurement and Contracts Office 
George C. Marshall Space Flight Center 
Huntsville, Alabama 35812 
Attn: Procurement and Contracts Office, M-P&C-MEA 

GPO PRICE $ 
I 4 2 5  VOLKER BOULEVARD/KANSAS CITY, h 

OTS PRICEtS) $ I 
.-> 7 

Hard copy (HC) 3 L bf 

,3 Microfiche (M F) - ,  

, I 
,.J rr 



0 

' f  

? .' 

STUDY FOR THE INDICIAL LOAD EFFECTS ON MULTISTAGE 
SPACE VEHICU SYSVEMS 

Linearized Indicia1 Aerodynamic Forces on Bodies of 
Revolution i n  Supersonic Flow 

W i l l i a m  D. Glauz 

ANIRJAL SUMMARY REPORT - Volume I 
21 June 1963 - 20 August 1964 

Contract No. NAS8-11012 
Control No. "3-81150 & S-1 (1F) 

CPB 16-609-63 & S-1 

MRI Project No. 2715-P 

For 

National Aeronautics and Space Administration 
Procurement and Contracts Office 
George C. Marshall Space Flight Center 
Huntsville, Alabama 35012 
Attn: Procurement and Contracts Office, M-PW-MEA 

MIDWEST RESEARCH INSTITUTE 
425 VOLKER BOULEVARD/KANSAS CITY, MISSOURI 64 i io /~c  8 1 6  LO 1-0202 



? 

PREFACE 

The work reported here is Part  I of a project performed f o r  the 
George C. Marshall Space Flight Center under Contract No. NAS8-11012. 
project benefited great ly  from the suggestions of D r .  Max Platzer,  the  techni- 
c a l  administrator. 

The 

The major par t  of the analysis was performed by D r .  William D. Glauz 
i n  t h e  Mathematical Analysis Section. 
The assistance of D r .  R .  R. Reed, Dr. €3. 0. Stearman, M r .  J. E. Yates, and 
Mrs. 14. T. Chinnery was of great value, especially i n  several of the 
appendices. 

M r .  A. D. S t .  John was project leader. 

Approved for:  

MIDGJESI' RESEARCH INSTITUTE 

Sheldon L. Levy, Diiector 
Mathematics and Physics Division 

21  A u g u s t  1964 



.' 

TABLE OF COh-S 

Page No. 

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  V 

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . .  2 

11. Sunimary.. . . . . . . . . . . . . . . . . . . . . . . . . .  2 

111. General Formulation of the  Problem . . . . . . . . . . . . .  3 

N. A Brief Review of t he  Literature. . . . . . . . . . . . . . .  4 

V. Derivation of a Class of Solutions of Equation (3.1) . . . .  6 

V I .  Transient Source and Coublet Solutions . . . . . . . . . . .  14 

V I I .  The Gust Doublet Solution for  a Cone . . . . . . . . . . . .  23 

V I I I .  GeneralizedForce Coefficients . . . . . . . . . . . . . . .  34 

IX.  Application of the Gust Doublet t o  Cone-Cylinder Eodies . . .  42 

X. Conclusions and Recommendations . . . . . . . . . . . . . . .  46 

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 

Appendix A - Review of the  Karman-Moore and Tsien Theories . . . . .  52 

Appendix B - The use of Surface Source Distributions . . . . . . . .  56 

Appendix C - Application of Bond-Packard Theory . . . . . . . . . .  68 

Appendix D . A Numerical Approach t o  the  Indicia1 Aerodynamics . . .  72 

Appendix E - The Nonlinear Pressure CoefPicient and Related 
Coefficients . . . . . . . . . . . . . . . . . . . .  77 



TABLE OF CONTENTS (Concluded) 

L i s t  of Figures 

T i t l e  Page No. - Figure No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Table KO. 

Regions of Influence Determined by Eq. (5.8) o r  (5.9) . . 10 

Regions of Integration f o r  Eq. (6.11) . . . . . . . . . .  19 
Regions of Influence Showing W and IF . . . . . . . . .  22 
Relative Error i n  Boundary Condition . . . . . . . . . .  29 
Regions of Influence for Various Cones . . . . . . . . .  29 
Growth of L i f t  fo r  MR' = 0.3 . . . . . . . . . . . . . .  33 
Steady-State L i f t  Coefficients . . . . . . . . . . . . .  33 
General Gust Doublet . . . . . . . . . . . . . . . . . .  35 
Regions of Integration . . . . . . . . . . . . . . . . .  43 
Control Points . . . . . . . . . . . . . . . . . . . . .  53 
Notation for Appendix B . . . . . . . . . . . . . . . . .  56 
Location of Doublet Distributions . . . . . . . . . . . .  73 
L i f t  Coefficient, Numerical . . . . . . . . . . . . . . .  76 
Steady-State Lift Coefficient for M = 1.5 (Nonlinear) . . 84 
Steady-State L i f t  Coefficient f o r  M = 2.0 (Nonlinear) . . 84 
Growth of Lift f o r  M = 2.0, R' = 0.15 (Nonlinear) . . . .  86 

Regions of Influence of Noving Point Source . . . . . . .  17 

List of Tables 

T i t l e  - Page No. 

I L i m i t s  f o r  Force Integrals . . . . . . . . . . . . . . .  45 
I1 Method of Determining . . . . . . . . . . . . . . .  74 
I11 Pan V a l u e s . .  . . . . . . . . . . . . . . . . . . . . .  75 

- i v  - 



NOWTION 

= strength of a gust doublet. Amn 
A,B,C,D,E = regions defined by Fig. 9. 
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r 

= speed of sound i n  the undisturbed f lu id .  

= source strength. 

= bending moment coefficient . 
= l i f t  (normal force ) coefficient.  

= moment coefficient . 
= pressure coefficient.  

= generalized force coefficient. 

= an arb i t ra ry  function, determined so as  t o  s a t i s f y  a boundary 
condition. 

= unit  s tep function, = 1 i f  z 2 0 and zero otherwise. 

= modified Bessel function of the first kind, order n . 
=&i. 

= modified Bessel function of the second kind, order n . 
= length of body, o r  Laplace transform. 

= Mach number, U/a . 
= r-intercept of s t ra ight  l i n e  i n  x-r plane, o r  a point on the 

body surf ace. 

= pressure, o r  transform variable corresponding t o  x . 
= equation of the body surface. 

= rad ia l  coordinate. 
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b 

I '  
I 

= spherical radius, =A/$+$ . rS 

S = base area of body. 

S = transform variable corresponding t o  t o r  T . 
*m 

t 

= t - t m .  

= time. 

= the mth time a t  which a gust doublet s t a r t s .  tm 

U = upstream velocity. 

U = axia l  velocity or perturbation. 

= strength of an elementary point source. 

= rad ia l  component of velocity. 

= velocity of the side gust.  

v 

V 

vO 

W = downwash. 

= tangential  (angular) component of velocity. W 

xn 
= axia l  coordinate, measured from nose of body. X 

= M R '  . U 

= &E. B 

r = Gama function. 

= p' 

= Dirac de l ta  (unit  impulse) function, or  slenderness r a t io .  

= angular coordinate. 

5 = ax ia l  coordinate, or location of a point on the x-axis. 

= location of the nth gust doublet on the x-axis. 5n 
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P = a i r  density. 

7 = time i n  uni ts  of length, = U t  . 
b # , t  = velocity potentials,  whose negative gradient yields a corresponding 

velocity vector. 

S ubs c r i p t  s 

a = axia l  flow. 

C = crossflow. 

d = doublet. 

B; = gust. 

k 

m 

n = location on x-axis of gust doublet. 

0 = upstream (undisturbed) condition. 

r = derivative w i t h  respect t o  r . 
S = source 

s t  = steady s t a t e .  

t = derivative with respect t o  t . 
X = derivative with respect t o  x . 
0 = derivative with respect t o  8 . 

= location on x-axis of a steady source or  doublet dis t r ibut ion.  

= time a t  wnich a gust doublet s t a r t s .  

7 -  7 = derivative with respect t o  

(prime) 

(bar)  - = Laplace transform. 

= derivative with respect t o  

Miscellaneous 

t s  independent variable or  asgumen ;. 
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A theory fo r  predicting gerodynamic forces on cone-cylinder bodies 
encountering a step side gust i s  developed. 
l inearized potent ia l  equation, and satisfies the  exact boundary condition when 
steady-state flow has been achieved. 
an approximate sense i n  the transient region of flow. 

The theory satisfies the f u l l  

This boundary condition i s  satisfied i n  

The theory i s  based on an elementary "gust doublet" solution. In  
order t o  a r r ive  at the  best fundamental solution f o r  the present purpose, t he  
methods of Laplace transforms, superposition of ax ia l  and/or surface singular- 
i t i e s ,  and extensions of older theories a r e  studied. A superposition of basic 
a x i a l  s ingular i t ies  i s  chosen as the  best  approach. 

The gust doublet solution yields  the  solution of Tsien when steady- 
For this  reason, the Karman-Moore technique i s  r e l a -  s t a t e  conditions occur. 

t i v e l y  simple t o  apply when complicated body shapes are t o  be considered. 

- 1 -  



I. IbiRo DUCTION 

Previous work i n  the f i e l d  of unsteady o r  t ransient  aerodynamic load- 
ing of axisymmetric bodies involves many assumptions and simplifications. 
F i r s t ,  it assumes tha t  the flow field can be described by a poten t ia l  function. 
The potent ia l  equation i s  then simplified by neglecting a l l  nonlinew terms, 
implying that  disturbances are small. 
earized equation a re  normally dropped by assuming the body t o  be slender and/or 
the reduced frequency t o  be very large o r  very small. 
boundary condition is normally used, again implying that the body is  slender. 

Furthermore, certain terms i n  the l i n -  

Also, an approximate 

The purpose of the present work i s  t o  develop a nore accurate the- 

This theory is based on the f u l l  l inearized potent ia l  equation, 
ory for  the indicia1 aerodynamic forces on a cone-cylinder body encountering a 
side gust. 
but makes use of the exact boundary condition. 

11. 

A theory f o r  predicting aerodynamic forces on cone-cylinder bodies 
encountering a step side gust i s  developed. 
l inearized potent ia l  equation, and s a t i s f i e s  the exact boundary condition when 
steady-state flow has been achieved. 
an approximate sense i n  the transient region of flow. 

The theory satisfies the f u l l  

T h i s  boundary condition i s  sa t i s f i ed  i n  

The theory is  based on an elementary "gust doublet" solution. I n  
order t o  arr ive at  the best fundamental solution f o r  the present purpose, the 
methods of Laplace transforms, superposition of ax ia l  and/or surface singular- 
ities, and extensions of older theories are studied. A superposition of basic 
ax ia l  s ingular i t ies  i s  chosen as  the bes t  approach. 

The gust doublet solution yields the solution of Tsien when steady- 
For t h i s  reason, the Karman-Moore technique i s  rela- s t a t e  conditions occur. 

t i ve ly  simple t o  apply when complicated body shapes are  t o  be considered. 

The l inearized lift coefficient for  a cone i s  obtained and compared 
with tha t  of Miles. The most significant differences are tha t  the gust doub- 
l e t  (1) gives more accurate steady-state resul ts ;  (2) has no overshoot of the 
growth of l i f t  curve; and (3) depends on both M and R' , not j u s t  the prod- 
uct MR' . 

The ef fec t  of quadratic terms on the aerodynamic forces i s  considered. 
Preliminary r e su l t s  indicate that  all such terms must be retained. 
l i nea r  terms need additional development t o  f a c i l i t a t e  t h e i r  application. 

The non- 
The 
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gust doublet theory requires additional work t o  es tabl ish more conclusively i t s  
accuracy and limits of applicabili ty.  

The analysis of. accuracy is handicapped by the lack of an exact 
solution f o r  a cone penetrating a step gust.  A numerical technique of obtain- 
ing such a solution, making use of the gust doublet, is  outlined. 
nique has the potent ia l  of supplying the  desired exact solutions t o  be used a s  
a basis of compsrison. 

This tech- 

The gust doublet theory provides the uni t  step kernel fo r  the DuhamRl 
in tegra l  method of calculating responses. 
convenient, appears t o  be obtainable from the  existing theory by the use of 
numerical o r  analytical methods. 

The uni t  impulse kernel, often more 

III, GENERAL FORMULATION OF THE PROBLEM 

The physical problem to  be solved can be s ta ted as follows: Find 
the  transient flow f ie ld ,  pressure, e tc . ,  on a cone-cylinder body of revolu- 
t i o n  encountering a side gust while t ravel ing at supersonic speed. 
l inearized potent ia l  theory, t he  problem may be s ta ted mathematically as 
follows : 

Using 

Find t h e  solution to  the l inearized potent ia l  equation 

with the boundary conditions 

1 - 5r = - v H(T-X) at  r = rn , and 
cos 8 0 

gr  - R ’ i ,  = 0 at surface of the  body. 

We w i l l  write the solution as 

- 3 -  



. 
where 

Y I - vor cos 0 H(T-X) , 

This has a physical interpretation. The potential ,  Q , corresponds t o  a gust 
of wind encountering a vehicle with no s ide displacement. The potential ,  fi , 
however, gives the impression of a missile suddenly mavin@; sideways into s t i l l  
air .  We are not con- 
cerned with t h i s  here. ) 

(Of course, there  i s  still ax ia l  flow i n  both cases. 

Now, Y s a t i s f i e s  Eq. (3.1) and likewise, fl must sa t i s fy  (3.1). The 
boundary conditions become 

9 ,=0  at r=eo (3.2) 

fir - R'fix = vo COS 8 H(7-X) at the body, r = R(x) . (3.3) 

The r ight  hand side of (3.3) is  commonly termed the  downwash. 
start with t h e  conditions (3.2) and (3.3) or  approximations of these. 
important t o  rea l ize  tha t  although Eq. (3.3) indicates a discontinuity i n  the 
flow along the  body, t he  complete solution, including Y , has no such discon- 
t i n u i t y  at the  body. 

Most authors 
It is 

An additional comment w i l l  be made at t h i s  point. The velocity po- 
t e n t i a l  i s  defined here as the  negative of the  gradient of the  velocity vector. 
A l l  authors a r e  not i n  agreement as t o  whether the  posit ive o r  negative sign 
w i l l  be used. 
no confusion need arise. 

As long as it is c lear  which is  used i n  a given a r t i c l e ,  however, 

IV. A BRIEF FE" OF TW LITERATURE 

This section reviews those works which most affected the  present 
report; it i s  not an exhaustive survey, however. 
here contain excellent revievs of other re la ted studies.  

Many of the  papers mentioned 

This report i s  concerned with the  ind ic ia l  aerodynamic theory f o r  
bodies of revolution. 
f o r  wings has been writ ten by Lomax [28). 
fo r th  these a re  applicable t o  the body of revolution, the de t a i l s  a r e  qui te  
d i f fe ren t  and, i n  general, more complex i n  the present case. 

An excellent discussion concerning ind ic ia l  aerodynamics 
Although the  basic approaches set 

* Numbers i n  brackets r e fe r  t o  the bibliography. 

- 4 -  



I .  

It should be realized that the considerable amount of work on non- 
l i nea r  theory i s  not mentioned here. The assumptions of l inearized potent ia l  
flow, nonexistence of shock waves, etc., imply tha t  t he  s imi la r i ty  parameter, 
B6 , i s  small ( l e s s  than one i n  any case). The Saturn V has a nose angle of 
33 degrees, requiring tha t  the  Mach number be l e s s  than about 1.8 f o r  success- 
ful application of potent ia l  theory. Also,  a detached shock wave i s  produced 
by t h i s  cone when M < 1.6 , i n  which case t h i s  work vould not be accurate, 
at l e a s t  near the  nose. 

The work on steady flow over ax ia l ly  symmetric bodies w i l l  be dis-  
cussed first, since many of t he  techniques developed there  are extendable t o  
the  nonsteady problems. 
known i n  short as the  Karman-Moore theory, serves as a good place t o  start. 
They considered axial ,  steady flow over a pointed body, and obtained a source- 
type solution. 
superposing such solutions t o  match a rb i t ra ry  body shpaes. The crossflow 
problem was studied l a t e r  i n  the  same manner by Tsien [2]. This is discussed 
i n  d e t a i l  i n  Appendix A. 

The work of Theodor von Karman and Norton B. Moore [I--, 

They then developed a numerical technique of summing, o r  

The above formulations can be looked upon as first approximations of 
analytic solutions f o r  a rb i t ra ry  slender bodies [3] , ra ther  than as numerical 
techniques. This approach was extended t o  higher order terms by Lighthi l l  141, 
Ward [5] and Brodericlr 161 . 
technique when the  body has a discontinuous slope was raised by Lighthi l l  [73 . 
He then developed a scheme t o  handle t h i s  type of si tuation, by means of 
S t i e l t j e s  integrals .  
Laplace o r  Fourier transformed solution which is  applicable t o  not so slender 
bodies. 
crossflow. 

A serious question concerning the  va l id i ty  of t h i s  

Adams and Sears [8] use an expansion technique on the  

Finally, Ta L i  [9] considers the coupling e f fec t  between axial and 

I n  the f i e ld  of nonsteady problems, the case of osc i l la tory  motions 
offers the greatest  abundance of work, 
of the Karman-Moore technique which is applied t o  slowly osci l la t ing bodies. 
Dorrance [ll] developed an analytic solution which serves as an approximation 
for slender bodies and low-frequency osci l la t ions.  
order terms i n  the reduced frequency by Lansing [12], and a somewhat more gen- 
e r a l  approach was taken by Bond and Packard [lg (see Appendix C ) .  
s t i l l  limited t o  slender bodies, however. 
the Adams-Sears technique t o  include the osc i l la tory  case, and Platzer [la 
shared tha t  t h e i r  results can be obtained by means of the Dorrance approach. 
Also, there i s  the work of a similar nature by Dzygadlo [lq who considers a 
body whose surface undergoes small vibrations of a ra ther  general nature. 

Platzer DO] presents a generalization 

This was extended t o  higher 

This was 
Zartarian and Ashley [14] extended 

Not so much work has been done, however, with the indicia1 case. 
Miles [17] considers the transient motion of a body of revolution, assuming the 
body t o  be very slender and using a high-frequency approximation. 
Was applied t o  cone-cylinder bodies by Yates [18,1g and Blackburn Eo) These 

This idea 
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l a t t e r  studies a l l  were concerned with both uni t  step and uni t  impulse re- 
sponses. 
l inearized potent ia l  equation. 

Also, Strang kg investigated some basic transient solutions of the 
See Section V I  f o r  a discussion of t h i s .  

In order t o  develop a more accurate aerodynamic theory for  the 
response t o  gust loading, there seems t o  be basically two approaches open. 
One i s  the Adams-Sears not so slender body theory; the other being a generali- 
zation of the Karman-Moore technique. 

The slender body theory of Miles could conceivably be used as a 
s ta r t ing  point for an Adams-Sears i terat ion.  
discontinuous body slope which occurs i n  the Saturn V, and indeed, i n  most 
present day missiles. 
be along the l ines  of Iiighthill.  

The prime objection here is the 

The only sat isfactory way t o  handle t h i s  would seem t o  

The Adams-Sears method might a l so  be applied t o  the solution of Bond 
and Packard, although the same arguments again apply. 
how t o  relax the author 's  approximation for  the Bessel function which is made. 

Here it is not clear  

An extension of the Karman-Moore theory was chosen as being the 
better approach. 
by means of the Laplace transform (Section V), and then by a more direct  
physical approach (Sections V I  and V I S ) .  
found by means of a modification of the paper of  Bond and PackElrd (Appendix C). 
A b r i e f  study of the possibi l i ty  of assembling nonaxial sources was a l so  made 
(Appendix B) . 

A basic  solution with which t o  work was investigated first 

An approximation of  the solution w a s  

V. IERIVATION OF A CLASS OF SOLUTIONS OF EQUATION (3.1) 

It appears t ha t  an exact solution of (3.1) which satisfies (3.2) and 
Various authors have found approximate solutions by (3.3) w i l l  not be found. 

making slender body assumptions of various t y p e s ,  or, assuming very high- 
frequency response, so t ha t  axial  derivatives i n  (3.1) may be neglected as 
compared t o  t i m e  derivatives. 

In the present work, we w i l l  attempt t o  use  the Karman-Moore tech- 

In t h i s  section, classes of 
nique of superposing solutions of (3.1) i n  such a way as t o  s a t i s0  (3.3) at 
a finite number of points  on the body surface. 
exact solutions of Eq. (3.1) w i l l  be found. They demonstrate the type of be- 
havior t o  be expected of t h i s  equation and give mathematical and physical i n -  
s igh t  into the problem. 

- 6  - 



L e t  

That is, w e  take Laplace transforms on x and T . I n  addition, we have 
assumed a cosine dependence on 8 which is  not written, f o r  brevity. Then, 
Eq. (3.1) becomes 

A general solution of (5.1) is 

being the  modified Bessel function of the  second kind, and F an K1 
a rb i t r a ry  function of p and s . 

In  order t o  make the  required inversions, assume tha t  one can write 

where A i s  a constant. The x-inversion can be performed by l e t t i n g  

(5.3) 

Thus, 

- 7 -  
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c 

Now, the  inverse can be found askg 
2 M sx 

where we have used [23)or@] 

IlI2(Z) =.\I 2 sinh (Z)  . 
lTZ 

Now, f ( s )  i s  an a rb i t ra ry  function of s . Normally the  boundary 
conditions a re  used t o  determine such functions. However, our in te res t  a t  
present i s  only t o  f ind a c lass  of solutions of (3.1) which may be used by 
means of superposition i n  the  Karman-Moore sense. 
is s t i l l  required, w e  w i l l  choose f ( s )  
defined, and may be carried out. 

Since an inversion i n  time 
i n  such a way tha t  t h e  inversion is  

This can be done by choosing 

Now, 

By w r i t i n g  the  sinh i n  (5.5) i n  terms of exponentials, w e  have 

- 0. - 



. (5.7) 
- (Mx- q=>s - (h+ 4777)s 

-e p = - - { e  2Mr A 1  sn+l B 

The following fac ts  a r e  noted a t  t h i s  point. To obtain a r e a l  
(physical) solution, we require tha t  

That is, the body must l i e  within the Mach cone attached t o  the  nose of the  
body. Furthermore, it i s  obvious tha t  i n  supersonic flow, 

Hence, both exponents a re  negative and the inverse ex is t s .  Taking 
the  inverse of (5 .7)  using (5.6) yields 

where H is  the uni t  step function. 

Equation (5.8) then represents a c lass  of solutions of (3.1). Be- 
fore  discussing these solutions, it may be mentioned tha t  any sum of such solu- 
t ions  i s  also a solution. 
that a more general solution i s  

I n  fact, it may be shown by d i rec t  substi tution 

- 9 -  



where g(Z) is  an arb i t ra ry  function of Z 

The solutions presented i n  (5.8) and (5.9) a r e  i n  some sense dis-  
continuous. That is, the form of the  solution i s  different  i n  different  re- 
gions of space. F i r s t  of a l l ,  of course, it i s  required tha t  x > $r - The 
locus of points where the  arguments of the  step functions vanish determine the  
limits of other regions. Figure 1 shows these regions i n  the x-r plane.* 

Fig. 1 - Regions of Influence Determined by Eq. (5.8) o r  (5.9) 

* Although the problem i s  three-dimensional, it is  easier t o  speak i n  terms of 
geometry i n  a plane. 
a sphere. We sha l l  continue t o  speak i n  terms of the x-r plane from 
time t o  t i m e  fo r  simplicity. 

The l ine and c i r c l e  shown are,  i n  rea l i ty ,  a cone and 
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The four regions, A ,  B, e, and E each require a different form of 
$. For example, using Eq. (5.8) wi$h n = 1 gives 

For Region E: T < !!.-(Mx- d m )  
P2 

# = o .  

For Region B: T > "(Mx+ d m )  
B2 

For Region A: x < Br 

(5.10) 

J # = o  . 

Thus, f o r  this case, the potent ia l  i s  zero i n  Region E, is time-de- n pendent or  t ransient  i n  Region C, and i s  steady i n  Region B. 

The regions i n  Fig. l a l s o  have a d i rec t  physical interpretation. 
Using the  r e a l  time, t , the  equation of the  c i r c l e  (actually, a sphere) i s  

(x-UtI2 + r 2  = a2t2 . 

That is, the  center i s  a t  the leading edge of the  gust front,  and 
t by the  radius of the  sphere corresponds t o  the distance traveled i n  time 

a disturbance propagating at the speed of sound. 
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The solutions given i n  (5.8) and (5.9) do not have the  r-dependence 
which is  normally seen i n  the literature. 
eas i ly  derived starting with an axial flow problem. 
8 -dependence, and Eq. (5.1) takes the  form 

Another set of solutions can be 
I n  t h i s  case, there i s  no 

- (85*+2M%s+M2s2)$ = 0 . 1 
*rr + % 

A general solution of t h i s  i s  

$(r,p,s) = F(p,s)Ko(r d&2+2M%s+M2s2) . 

Then, set t ing 

p = (5-Ms) 
P2 

and assuming tha t  F i s  independent of p ; i .e.,  

F = M(s) , 

one can invert (5.12) with respect t o  p t o  obtain 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

Again, a form of f ( s )  i s  selected tha t  w i l l  enable a f i n a l  inver- 
sion, namely 

1 f ( s )  = - 
S" 

- 12 - 



. 
We then obtain a c lass  of solutions t o  the ax ia l  flow problems. 

It i s  well known tha t  a solution t o  the  crossflow problem can be 
b 
br  obtained from an ax ia l  solution by applying the  operator cos 8 - If, 

f o r  convenience, we denote 

and consider a more general form of (5.15), namely, 

then we obtain 

(5.16) 

(5.17) 

It i s  noted t h a t  t he  same regions of  influence occur i n  the  solution 
(5.15) as were shown ear l ie r .  
known elementary steady potentials 
(5.16) and (5.17). 

It should a l so  be pointed out t ha t  the  w e l l  
can be obtained as special cases of 

One merely se t s  

g(z+-) = constant 
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. 
and obtains 

(5.18) 1 
It appears that  a wealth of solutions t o  Eq. (3.1) can be readily 

obtained. The problem, of course, is  t o  sa t i s fy  the boundary condition. An- 
t i c ipa t ing  a solution embodying the  Karman-Moore approach, it is  then a matter 
of choosing tha t  basic o r  elementary solution which is  most convenient t o  work 
with. It was found tha t  a clue t o  this choice was available i n  the work which 
follows i n  Section V I .  

VI. TRANSIEhT SOURCE N?D DOUBLET SOLUTIONS 

The paper by W. J. Strang 
problem. Some of his work w i l l  be reviewed here, together with extensions 
made i n  an attempt t o  solve the  gust problem. 

1211 has a direct  bearing on the  present 

Consider an elementary source of strength V which is located at 
the or igin of a fixed coordinate system. If t h i s  source emits a pulse at  
t = 0 , then the  potential  at a point a distance rs = d m  from the 
or ig in  may be writ ten as 

where 6 i s  the Dirac del ta  function. This says, i n  effect ,  t h a t  t he  potent ia l  
is attenuated as l/rs and that it propagates w i t h  the  speed of sound. NOW, 

if the source were placed at the point 
gin, then 

x = U t ,  r = 0 rather than at the  o r i -  
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V a  $ = - S(at-p) 
4m 

where 

Next, consider a point source moving with supersonic speed U . It 
starts at  t i m e  t = 0 at  the  position x = U t  , reaching the  or igin of t h e  
coordinate system at time t . Alternatively, it can be viewed as a source 
which i s  fixed at the  origin i n  a moving coordinate system. 
is  assumed tha t  t he  source emits at a constant rate. 
found by superposition of pulses of the form of (6.1), or, i n  t he  l i m i t ,  by 
the  integral  

In  any case, it 
The potent ia l  can be 

Ta evaluate t h i s  integral, use must be made of the re la t ion  

... 

where the  xi are the  roots of f (x)  = 0 . This re la t ion may be easi ly  
proved, but i s  stated here without proof. Now, the roots of 

are simply 

Thus, there are four cases t o  consider: 
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I (6.5) 

where, i n  the  last three cases, :e also require x > Br . 
correspond t o  the Regions A, B, C, and E shown i n  Fig. 1. 

These four cases 

Now, consider 

1 F =  pt) + u(x-ut) I I t = ti a 

But, at t = ti , p ( t i )  = ati . Furthermore, ti 2 0 . Thus, 
( 6.6 ) becomes 

1 F =  

and, using (6.4),we get simply 

1 F =  
a d m  
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Combining (6.2), (6.3), (6.5), and (6.7) the  potential  function may be writ ten 
as follows: 

V In  Region B: $d = 
2I-l 4- 

In  Region'?: fl = v 

J In  Regions A and E: fi = 0 . 

Equation (6.8) gives the potent ia l  due t o  a point source located at 
the  origin of a coordinate system which i s  moving with supersonic speed. 
s tar ted emitting a t  time t = 0 . It 

Consider next a point source at x = 5 
system, which starts emitting at  time t = s/U . 
at a later instant,  corresponding t o  the  t i m e  required fo r  the coordinate sys- 
tem t o  move a distance 5 . The various regions of influence of t h i s  source 
axe shown i n  Fig. 2, superposed on the  regions of influence of t he  potent ia l  
given by (6.8). 

i n  this moving coordinate 
That is, it starts emitting 

r 

I .  / 

Fig. 2 - Regions of Influence of Moving Point Source 
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The smaller sphere has the equation 

while the  cone has the equation 

The dotted l i nes  represent the  locus of intersections of the spheres and 
associated cones, and have the equation 

x = U t  - r / p  . 
A These l i nes  divide Region C into two Regions, C and D. 

The point source has the potential  Pll given by 

PIle = 0 i n  (e) . 

A dis t r ibut ion of sources along the  x-axis, where each source starts 
emitting as it crosses a gust front is  called a gust source by Strang. It i s  
t h i s  type of dis t r ibut ion that i s  contemplated here as being a means of f ind- 
ing a solution t o  the problem of in te res t .  It should be mentioned that u l -  
timately a doublet distribution is  desired, but this can be easi ly  obtained 
from a source distribution. 

This gust source w i l l  include sources located on the axis between 
x = 0 and x = U t  . To obtain the  t o t a l  source potential, gS , we w i l l  
have t o  evaluate the integral  
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I -  

(6.11) 

where is  given i n  (6.10). The function f ( 5 )  , which may be chosen 
arb i t ra r i ly ,  represents a possible var ia t ion of source strength with position. 

The integration of (6.11) is f a c i l i t a t e d  by Fig. 3. 

I / 

Case B 

Case D 

Fig. 3 - Regions of Integration f o r  Eq. ( 6 . U )  

- 19 - 



There a r e  three nontrivial  cases t o  consider: 

Case B: 
l ies i n  Region B of Fig. 2. 

This case corresponds t o  the s i tuat ion when the point 
P(x,r; t)  I n  this case, only  those sources which 
are on that portion of the  a x i s  labeled as b contribute t o  the  t o t a l  poten- 
tial. Furthermore, the  point P l ies i n  the  corresponding Region b for  each 
of these sources. Thus, 

Case C: Here point P l i es  i n  Regioneand i s  t o  the  l e f t  of t he  
l i n e  x = ut - r / p  . 
yields 

Applying t h e  Same sor t  of reasoning as f o r  Case B, 

r x-8r 
Ut-M 4-2 r 

Jo 

f ( 5 )  + I 
U t  -M 4- 

(6.13) 

Case D: Now the  point P l i es  i n  Region f? but i s  t o  the r igh t  of - 
t he  l i n e  x = U t  - r/@ . kTe define t h i s  as Region D. Here 

u t - M  d- r 
(6.14) 

Of course, it is  easi ly  seen tha t  
The gust source considered by Strangscorresponds t o  se t t ing  f ( S )  = 1 

@ i s  zero outside of these 
regions. 
(that is, a constant). Carrying out the integrations yields 
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. 
-1 (dB = !!- cosh (g) for Case B 

2lT 

gS = 0 otherwise. 

. (6.15) 

By sui table  manipulation, the f’unction (bS f o r  Cases C and D can 
a l so  be written as 

.J 

where C* i s  t h a t  portion of Regions C and D f o r  which 

x > M r  

and P is the  r e s t  of Regions C and D (see Fig. 4).  
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Fig. 4 - Regions of Influence Showing C* and P 

a2t2 

These resu l t s  agree with those of Strang except for  the existence of 
the  re la t ive ly  small Region @. 
however. The above expressions for & are continuous everywhere, even 
across the divisions between regions. 
not continuous, but t h i s  i s  no problem, since the derivatives required a re  
continuous. 

H i s  results fo r  the pressures are  correct,  

Certain of the derivatives of are  

I f  one considers a point fixed on the body, w i t h  x > p r  , the  
f o l l w i n g  sequence of events occurs : 

1. I n i t i a l l y  there i s  no disturbance and the potent ia l  i s  zero. 
The potent ia l  remains zero for a time a f t e r  the source s t a r t s  emitting, since 
the point i s  i n  Region E. 

2. A t  time t = 2 [Mx- d-1 , the potent ia l  s t a r t s  t o  
ae2 

change with time. This change continues smoothly, while the spherical  region 
grows and moves downstream. 
Region D and then C. 

The point may be considered t o  pass through 
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. 

3. A t  time t = 1 [Mx+ 4-1 the point has reached Region B 
as2 

and the  steady-state value of 6 has been attained. It w i l l  then remain i n  
Region B with a constant potential .  

V I I .  THE GUST DOUBLET SOLUTION FOR A CONE 

To use the  Karman-Moore technique, it is desirable t o  first f ind  the 
solution for  flow over a cone. 
was solved by Tsien [2] . 
agrees with Tsien 's  solution i n  Region B. 

The problem of steady crossflow over a cone 
We desire a solution of the  form of Eq. (6.11) which 

Since t h i s  is a doublet solution, we w i l l  need t o  f ind  

It turns  out that the required solution i s  tha t  f o r  which t h e  unknown function, 
f ( s )  , is simply 

Carrying out the integration of (7.1)  using (7.2) and the  methods of 
Section V I ,  w e  have 
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e 

B2r cosh-l( E) - f dx2"2p-} i n  B 

2 f B r cosh 
I 

+ p2r cosh-'(%) - :.jp-s2$} i n  C and D 

where the upper sign is t o  be used i n  Region C and the  lower i n  D. 
derivatives of (7.3) yields,  for  Region B, 

Taking 

while f o r  Regions C and D , 
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. 

. 

(x-ut) [2x%t-(x 2 2  +r >(x 2 2 2  +u t I] I r 2  kx-ut )qr2]3/2 

v = -  v cos 0 
4rr 

- M +  q- 

In  Eqs. (7 .4 )  and (7 .5 )  the relations 

(7.5) 

have been used. 
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. 
The pressure coefficient may be writ ten as 

where we have neglected the  squared terms.* This gives 

i n  Region B, while i n  C and D, 

= v cos e [r4+(x-~t)Lr2+~t(x-~t)2J 

+ (x-ut ) 
(7.9) 

The solution given i n  Eqs. (7.3) t o  (7.9) agrees exactly with Tsien's 
solution i n  Region B, the area of steady-state flow. In  addition, t he  com- 
ple te  solution together with the  derivatives given above is continuous every- 
where. 

Now, the  above solution satisfies the boundary condition (3.2) a t  
in f in i ty .  To sa t i s fy  condition (3.3) at the  body, one requires tha t  

#r - R8$dx = vo cos 8 i n  Region B 

9, - R'fix = vo cos 8 H(Ut-x) i n  Regions C and D . 

(7.10) 

(7.11) 

* See Appendix E f o r  higher order approxinations t o  t he  pressure coefficient.  
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Here we have an impasse. Since the  solution has but a single ar- 
b i t r a ry  constant, 
(7. U) . 
cussed presently. 

V , it is, i n  general, impossible t o  sa t i s fy  both (7.10) and 
Thus, t he  present method implies an approximation which w i l l  be d is -  

Since the  solution is continuous, Eq. ( 7 . 1 1 )  cannot be sat isf ied,  

Tsien used 
so the  value of V w i l l  be chosen so as t o  satisfy Eq. (7.10). That is, we 
w i l l  i n s i s t  that the  correct steady-state solution be obtained. 
t h e  approximate (slender body) condition 

rather  than the exact boundary condition (3.3). 
use the  exact condition, so t h i s  w i l l  be done. 

It i s  no more d i f f i c u l t  t o  
Using (7.10), w e  obtain 

V - =  
n -1 L + 2Y2/P2+1 2jly2 

cash (,> y2 

where 

y = !3R' 

R' = slope of cone surface . 

It is  assumed, of course, t ha t  

1 R'C- 
P 

so that t he  body l ies  inside of the Mach cone. 

(7 .12 )  

The amount of error  involved i n  not sat isfying Eq. (7.11) can be 
shown graphically as i n  Fig. 5, p .  29. In t h i s  fiGui-3 i s  shown the quantity 
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. 

Downwash (Calculated) - Downwash (Exact ) 
Downwash ( Steady-State) 

for different cone angles. The calculated downwash is  t h e  left-hand s ide of 
(7.11) and the  exact downwash is the r igh t  -hand s ide of (7.11). The steady- 
s t a t e  value i s  simply vo cos 0 . AMach number of two w a s  used here, and the  
cone location with reference t o  the Regions B, C, and D is shown i n  Fig. 6. 
Fig. 5 shows tha t  t he  error  decreases as R' becomes smaller. 

Indeed, as R * + 0  , it can be shown t h a t  Eq. (7.11) i s  s a t i s f i e d  
In other words,the solution requires a slender body approximation i n  exactly. 

order t o  s a t i s f y  the  boundary condition. For R' very small, (7.12) approaches 

V 
-FS 
n 

(7 .13)  

Substituting (7.13)  in to  (7.5) and retaining only the  lowest order terms, 

x -ut [2xut -( X2+Ut2)] 
R' [ ( x - U ~ ) ~ ] ~ ' ~  

voRr2 cos  e 
2 

lim (fI&-R'&) = 
R'+O 

+ O(R') 
R'2 

cos 8 { + -(x-vt)3 } 
2 [(x-ut 1'3 3'2 

( f q - R ' 9 q  = O 
l i m  

R ' 3  0 

= v COS 8 H ( U t - x )  . 
0 

The last s tep holds since [(Z)2]3'2 = - (Z)3 f o r  Z negative. 

(7.14) 
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Fig. 5 - Relative Error i n  Boundary Condition 

0.5 1 :o 
x/m 

1 :5 

Fig. G - Regions of Influence fo r  Various Cones 
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Heretoforejother authors have found approximate solutions t o  the 
potent ia l  equation by: 
ing slender body and/or high frequency; and (2) using a slender body approxi- 
mation for the left-hand side of (7.11). 
slender body approximation fo r  the r ight  -hand side of (7.11). 

(1) neglecting cer ta in  terms i n  the  equation by assum- 

The present theory involves only a 

It cannot be said at this point whether the  present solution is  any 
better or  worse than previous approximations. 
solution leads t o  the  correct steady-state values. 

However, at l ea s t  the present 

The growth of l i f t  w i l l  be found next and compared with Miles ' l17)  
results . 

The l i f t  coefficient, CL , i s  defined as 

(7.15) 

where 
We need t o  consider three different cases. 

S is  the base area of the  cone which i s  assumed t o  have unit  length. 

1. Part of the cone has not yet been affected by the gust, i.e., 
par t  of it l ies  i n  Region E. 

2. The cone is completely within Regions B, C, and D but not wholly 
within B. 

3. The cone is  completely within Region B, i.e., steady s t a t e  has 
been reached. 

Carrying out the lengthy integrations and simplifying, the results 
obtained are: 
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1+R 

M 
9 Case 1: Ut < 

1+R l+R 

M M 
Y < ut < Case 2: 

1 - & d G  

2 -  
+ M -- - tUtl2 I - [1- +q2 + cL 

- (1-Ut)2+Rf2 (1+Rs2+Ut) t 
2 d 3  ( 1 + R t 2 )  

1 
2 
- 

Case 3: Ut > l + R 1  * 
9 

1 - 143 
M 

'(7.16) 
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. 
* 

where the  steady-state lift coefficient i s  

2 .I 1-y2 <vo/u) c =  
Lst y2 cosh’l(:) + (1+2R’ 2, 4 3  (7 .17)  

Figure 7 shows CL/CL,~  p lot ted against U t  f o r  MR’ = 0.3. 

The most significant differences are as 

The 

result of Miles is  also shown. 
follows : 

1. Miles’ results depend on the s ingle  parameter a = MR’ , while 
the present case depends on both M and R r  . 

2. There i s  no “overshoot” i n  the present theory. 

3. Steady state i s  reached i n  a f i n i t e  t i m e .  

4. The growth of l i f t  is  continuous and different iable ,  that Zs, 
there is no “knee” i n  the  curve. 

In  addition, t he  steady-state l i f t  predicted by the present theory 
i s  i n  agreement with the exact steady flow results, whereas Miles‘ theory pre- 
dicts the slender body resu l t  of 2v0/U (see Fig. 8).  

In  the future,  it would be highly desirable t o  obtain a numerical 
solution of Eq. (3.1) sat isfying (3.3) fo r  a cone of f i n i t e  semiapex angle. 
This would allow a comparison of various theories, as w e l l  as possibly pro- 
viding nore insight i n to  the phenomena involved. 
solution is  presented i n  Appendix D. 

A possible approach t o  such a 
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VIII. GENERALIZED FORCE COEFE'ICIEhTS 

This section contains the derivation and tabulation of various co- 
e f f ic ien ts  which a re  required i n  the  next section. These coefficients are the  
normal force o r  lift coefficient, t he  moment coefficient, and a t h i r d  coeffi-  
cient called the  bending moment coefficient. We c a l l  these, collectively,  t he  
generalized force coefficients.  These w i l l  be defined by 

where C i s  the  fith generalized force coefficient,  S is  a reference area 

(here the  base area of the body), L i s  the reference length (length of body), 
and R(x) i s  the prof i le  shape. By se t t ing  = 0, 1, and 2 we get CL , CM , 
and CB , respectively. 
when the  mode shape i s  approximated by a quadratic. 

FQ 

The latter i s  required i n  the  missilebending equations, 

Equation (8.1) contains no angular dependence. It has already been 
integrated out. 
be made t o  the  cos 8 

Therefore, i n  the remainder of this section r.0 references w i l l  
dependence of the potent ia l  function and i ts  derivatives. 

It is  most advantageous t o  express (8.1) i n  terms of indefini te  i n -  
tegrals ,  i n  a rather  general form. This i s  due t o  the  f ac t  that a numerical 
procedure, which is  an extension of t he  Karman-Moore technique, i s  contemplated. 
I n  addition, the  many different forms of l i m i t s  (of t he  integrals)  which can 
occur, together with the complexity of the expressions make it most e f f ic ien t  
t o  use indefini te  integrals.  The l i m i t s  can then be substituted in to  the  ex- 
pression numerically by the computer program. 

For the  purposes of t h i s  section, the  approximate ( l inear )  expression 

w i l l  be used. The nonlinear terms are considered i n  Appendix E. 
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The prof i le  shape, R(x),  w i l l  be taken as a frustrum of a cone, 
with the equation 

By properly choosing R' and P , any desired segment of a cone-cylinder body 
can be correctly expressed by (8.3). 

Now, since the  gust doublet w i l l  be used as a basic solution i n  the 

It i s  suff ic ient  t o  consider a gust doublet which s t a r t s  at an arbi- 
Karman-Moore approach, a s l i g h t l y  more general form of t h i s  doublet w i l l  be 
needed. 
t r a r y  point Sn on the  x-axis at the  t i m e  tm (see Fig. 9).  

E 

X 

Fig. 9 - General Gust DOuSlet 
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. 
In  t h i s  figure, the  equations of the su;-faces which define t h e  

regions are: 

1. Xn = f3r 

2 2 2 2  2. (Xn-UTm) + r = a Tm 

where w e  have introduced the  notation 

G = x - S n  

T m = t - t ,  . 

17e then have, i n  Region B, 

(8.10) 

(8.11) 

(8.12) 
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l -  

b 

while i n  Regions C and D (upper signs used in C )  

r 

c 

(8.13) 

(8.14) 

(8.15) 

(8.16) 
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The expressions (8.10), (8.12), (8.14), and (8.16) may then be placed 
in to  (8.1), using the  re la t ion  for CP given i n  (8.2). The integrals  may then 
be evaluated on the  segment of surface given i n  (8.3). 
coefficients are given as (8.17) to  (8.19) for Region B and (8.20) t o  (8.22) 
fo r  C and D. 

The resul t ing force 

I n  B: - 

[3(1-y2)x+5(<n+f12PRf )] Y 
cF2 = cB = - 6 SL2U( 1 -Y2 j2 

+ n 

In  C and D: 

[( 1+Rt2)x+PRf -S,+uT, Z 
cFo = cL = 3 

(8.17) 

(8.18) 

(8.19) 

t 

+ I CL (Region B)  
2 (8.20) 
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. 

cF1 = % = 

- (1+R 2)(P2+ ( 5n+UTm)2)] si&-' E 
2 3/2 2( l + R t  ) 

2(1+Rt 2 ) 3/2 

2( l+Rf 2 ,  

. 

.L + - CM (Region B) . 
2 (8.21) 
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2 
z3/2 3( 1+R '  )x -5 (PR1  -Sn-UTm) 

6 
- &n 

cF2 = cB - 2 SL2U( 1+R ' )2 

[5(PRf-5,-rUTm)2-(1+Rt2)(P2+(~n+Wm)2)] [ ( l+R* 2 )x+PR~ -5 -UT 3 z1/2 
n m  

A- 

4( l+R1*)  

4- [5(PRf -5n-UTm)2-(l+R12)(P2+(gn+b.m)2)] k t  (<n+UTm)+P]2 sinh-l 

4( 1+R I )3/2 

- U T m E R ' - 5  n -UTm] [15(PR1 -s,-UTm)2-9(l+Rf 2)(p2+(5n+UTm)2)] sinh-l  ?!, 
2 3/2 3( l + R  ) 

+ L CB ( R e g i o n  B) . 
2 (8.22) 
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In these equations we have used the abbreviations 

Y = < - p2(Rlx+€')2 

Z = (Xn-UTm)2 + (R'x+P)~ 

- ( X,-UT~)+R ( R X+P ) 
R1( L&+UTm)+P 

Z =  

(8.23) 

(8.24) 

(8.25) 

(8.26) 
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IX. APPLICATION OF THE GUST DOUBLET TO CONE-CYLINDEX BODIES 

The gust doublet solution which w a s  derived and discussed previously 

This section presents t he  detailed procedure t o  be used 
can be used as the  fundamental solution i n  a Karman-Moore procedure f o r  an 
a rb i t r a ry  body shape. 
f o r  a cone-cylinder body such as t h e  Saturn V configuration. 

The basic solution given as Eqs.  (8.9) t o  (8.16) i s  i n  a general 
enough form t o  be applied direct ly  t o  a cone-cylinder combination, provided 
the points 5, , the  times tm , and the coeff ic ients  are known. To de- 
termine these, use i s  made of the f a c t  that the steady-state solution agrees 
with the  crossflow solution of Tsien. 

It is  convenient t o  make use of Tsien's solution direct ly .  That is, 
first  one can choose as "control points" on the body surface the  same s e t  as 
would be used i n  a steady-flow conputation.* 
points  intersect  t he  x-axis at  the points 5, . Now the  coefficients can 
be determined i n  the standard fashion if  the  steady-state results (Region B) 
are used. 

The Mach l ines  through these 

To account f o r  the motion of t he  missile through the  gust front,  it 
is  logical  and consistent t o  delay t h e  start of emission of the  doublets u n t i l  
t h e  gust reaches the  loca l  origin, Sn . This gives the t i m e ,  & , asw 

The complete solution is  then easi ly  obtained by surnming a l l  of t h e  
doublet solutions used. The only remaining s tep i s  t o  integrate the sumation 
over the  body surface t o  obtain the desired generalized force coefficients.  
The expressions (8.17) t o  (8.22) developed previously can be used f o r  t h i s  
purpose, i n  t he  manner next described. 

* 
)cw- The subscripting notation now becomes somewhat superfluous since m and n 

a r e  no longer independent. To avoid future  complications, however, it is  
best t o  r e t a in  both subscripts and m a k e  use of (9.1) when applicable. 

See Appendix A f o r  a discussion of the procedure. 
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The limits of integration depend on t h e  way i n  which the regions of 
space formed by t h e  gust doublets intersect  the  body surface. 
there  i s  no intersection, there is no contribution, while at t h e  other extreme, 
a portion of the  body could be i n  Region B and another portion i n  Regions C 
and D. To f a c i l i t a t e  the determination of t h e  limits, some geometrical con- 
s t ruct ions a re  employed. 

Obviously, i f  

Consider a s t ra ight  l i n e  s e p e n t ,  representing a portion of the 
missile surface, given by the  equation 

r = R t x + P  . (9.2) 

This segment extends from x = % t o  x = X b  , where % i s  less than xb . 
The contribution t o  the  t o t a l  force coefficient CF at a given t i m e ,  t , 
which results from the  integration over t h i s  segment of the (mn)th pressure 
coefficient,  can be obtained with the  help of Fig. 10. 

1 

r 

Fig. 10 - Regions of Integration 
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The numbered curves are the  ones given i n  Fig. 9, except t ha t  now 

R l  , drawn 

the c i r c l e  i s  considered as two curves which meet a t  the  point Q2 . This 

point i s  at  the intersection of the c i r c l e  and a l i n e  of slope, 
tangent t o  the  c i rc le .  The point Q1 i s  at the intersection of curves 1 and 
3 (and 2) and has the  coordinates 

PUTm 
x = g n + -  

M2 
(9.3) 

Through Q1 is  also drawn a l i ne  of slope R '  . These two additional l i nes  
then help form the  new regions labeled F, G, H, and I . 

The l i n e  given i n  (9.2) intersects  the curves 1, 2, 3, and 4 a t  the  
points 

Equation (9 .7)  gives imaginary roots if  there  i s  no intersection. 

. (9.7) 

The end 
points of the  l i n e  segment, (9.1), can eas i ly  be located re la t ive  t o  the  
regions shown i n  Fig. 10. Once t h i s  is done, Table I can be used as an aid i n  
determining the l i m i t s  of integration (values of x) t o  be used with the  indefi-  
n i t e  integrals  given i n  Section VIII. 
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TABLE I 

LIMITS FOR FORCE INTEGRALS 

Location L imi t s ,  RegionsC and D Location 

Of Xb 
A 
B 
C 

Limi t s ,  Region B 
of xa 

Lower 
- 
- 
x2 

52 
52 

x2 
x2 
x2 

xa 

a 
xa 
xa 
xa 

- 

X 

- 
- 
x2 

"2 

x2 

52 
xa 

xa 

- 

- 
- 
- 

~ 

Uwer Lower 

- A 
A 

A 
xl 

1 

1 

X 

X 

"1 
'a 

a 
Xa 
a 

X 

X 

A D 
E A 

B 
B 

B 
C "b 

x4 

XD 
"b 
x4 

x4 

xb 

xb 

- 

B 
B 

C 

D 

E 

C 

C 

C 
D 
D 
E 
A 

A 
A 

F 

F 
G 
H 

xb 

4 X 

- F 

F G "b 
x4 

x4 

*b 

- 

F 
G 

G 
H 

H 
G 
H 
H 

A I 
I I 
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Regions C and D a re  real ly  no different  as f a r  as the  force coeffi-  
cients are concerned. 
be shortened; but since the  use of a computer i s  assumed, it i s  easier t o  have 
a longer tab le  u t i l i z ing  simpler and more d i rec t  logic.  

There a r e  also a few other ways tha t  the table could 

To obtain the  t o t a l  force coefficient,  then, one needs only t o  re-  
peat t h i s  procedure for  a l l  of the 
(9.2). 

5, and f o r  a l l  l i n e  segments such as 
A double summation then yields the  desired result. 

X. CONCLUSIONS AND RECOE'MEMIATIONS 

Two basic methods were considered f o r  predicting ind ic i a l  aerodynamic 
forces on cone-cylinder bodies of revolution. The Karman-Moore [l] technique 
uses a superposition idea well suited t o  d i g i t a l  computers, while t he  method 
of Adams and Sears [ 8 )  i s  more analytical  i n  nature, using transforms and ex- 
pansions about the  slender body solution. 

The Adams-Sears scheme i s  not so w e l l  adapted t o  handling slope dis- 
continuities,  so t he  Karman-Moore idea w a s  considered t o  be more useful f o r  
t h i s  study. 

A fundamental solution - t he  gust doublet - can be used with t h e  
Karman-Moore method f o r  pointed bodies with a rb i t ra ry  prof i les .  This solution 
is  derivable from more elementary point sources by superposition. 
doublet possesses cer ta in  properties i n  various regions of space: 

The gust 

1. An undisturbed region upstream of the  Mach cone, 

2. An undisturbed region suf f ic ien t ly  far downstream, in to  which 
the  distrubance has yet t o  propagate, 

3. A spherical region characterized by t ransient  o r  unsteady flow, 
and 

4. A region i n  which steady-state flow has been achieved. 

It can be shown tha t  the  existence of these various regions is  a property of 
general solutions t o  the  unsteady potent ia l  equation. 

The gust doublet s a t i s f i e s  t he  exact boundary condition f o r  a cone i n  
the steady-state region. Furthermore, the  solution is  precisely that of Tsien's 
i n  t h i s  region. Therefore, existing numerical procedures f o r  computing steady 
crossflow, based on h i s  modification of t he  Karman-Moore method, can be 
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readi ly  extended t o  the indicia1 case. 
an approximate sense i n  the transient region by the gust doublet, and exactly 
when the l i m i t  of slender bodies is considered. 

The boundary condition is sa t i s f i ed  i n  , 

The work of Bond and Packard can be modified t o  yield a solution of 
the same form as the gust doublet, but with the wrong magnitude. The two 
theories agree, however, i n  the case of a body which i s  vanishingly th in .  

The linearized lift coefficient differs i n  many ways from tha t  of 
Miles 
steady state, whereas the present theory i s  "exact" as f a r  as l i nea r  potent ia l  
theory i s  concerned. 
Miles' r e su l t  i n  the follawing respects: 

f o r  a cone. Miles' theorygives the slender body lift coefficient a t  

The growth of lift fo r  the gust doublet d i f fe rs  from 

1. It has no "overshoot." 

2. It i s  a function of both M and R' , and not simply of the 
product MR' . 

3. I ts  i n i t i a l  ra te  of growth i s  more rapid. 

4.  It has no discontinuities i n  the r a t e  of growth of lift. 

5. It reaches steady s ta te  i n  a f i n i t e  t im . 
The inclusion of the quadratic terms i n  the pressure coefficient i s  

necessary i n  order t o  obtain accurate force coefficients.  
those t e r n  involving ax ia l  derivatives, and not just  the rad ia l  derivatives,  
as  i s  often done. This is  pa r t l cu la r ly t rue  with blunter bodies, and a t  Mach 
numbers s ign i f icant ly  higher than 1. 

One must re ta in  

The generalized force coefficients can be expressed i n  in tegra l  form. 
I n  special  cases, the integrations can be carried out analytically,  but i n  
general, a numerical integrationwould probably be more ef f ic ien t .  More work 
should be done, both i n  obtaining the force coefficients as well  as  comparing 
them with other theories (e.@;., steady nonlinear flow theory for  cones). 
is  mandatory i f  one is  t o  be able t o  es tabl ish ranges of appl icabi l i ty  and 
accuracy of the gust doublet technique. 

This 

An exact solution for a cone encountering a s t ep  s ide gust,  based on 
l inearized potent ia l  theory, should be obtained. This would serve as a basis  
fo r  comparison of approximate theories. 
but there a re  def ini te  possibilities of obtaining numerical solutions. 
poss ib i l i ty  is  the technique discussed i n  Appendix D. 
fu r ther  i n  order t o  assure its convergence, e tc .  Modifications may be neces- 
s a ry  t o  obtain high accuracy economically. 

An analytic solution seems improbable, 
One 

It should be pursued 
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The idea of using surface source and doublet dis t r ibut ions i s  in- 
te res t ing  from an in t e l l ec tua l  viewpoint, but appears t o  be impractical due t o  
the extreme complexity of the result ing mathematical forms. 
insight  is  obtained from and about such a technique, it i s  recommended tha t  it 
not be pursued f'urther. 

Unless some new 

A more accurate theory for predicting the forces produced by an i m -  
pulsive side wind would be highly desirable. 
most convenient kernel t o  use i n  the Arhamel in tegra l  technique of computing 
missile responses t o  actual  wind profiles.  
e i t h e r  analyt ical ly  o r  numerically from the exis t ing gust doublet theory. 
choice of a technique will involve a consideration of the economies involved, 
accuracy obtainable, and the form of the resu l t s .  

The uni t  impulse is often the 

An impulse theory could be obtained 
The 

- 48 - 



1. Von Karman, Th., and N. B. Moore, "Resistance of Slender Bodies Moving with 
with Supersonic Velocities, with Special Reference t o  Project i les ,  
Trans. A.S .M.E. , - 54, 303-310 (1932). 

2 .  Tsien, H. S . , 'Supersonic Flow Over an Inclined Body of Revolution," 
J. Aero. Sci. ,  - 5 ,  480-483 (1938). 

3, Lighthil l ,  M. J., "Supersonic Flow Past Bodies of Revolution, Aero Res. 
Counc-, R. and M. No. 2003, JanuaryI 1945. 

4. Lighthil l ,  M. J., 'Supersonic Flow Past Slender Pointed Bodies of Revolution 
a t  Yaw," Quart. J. Mech. and Appl. Math., - I, 76-89 (1948). 

5. Ward, G. N., "supersonic Flow Past Slender Pointed Bodies," Quart. J. 
Mech- a d  Apple Math., Val. - 11, Part 1, 75-97 (1949). 

6 .  Broderick, J. B., "Supersonic Flow Round Pointed Bodies of Revolution , I' 
Quart. J. Mech. and Appl. Math., Vol. 11, Part  1, 98-120 (1949). 

7. Lighthil l ,  M. J., 'Supersonic Flow Past Slender Bodies of Revolution the  
Slope of Whose Meridian Section is  Discontinuous," Quart. J. Mech. and 
Apple Math., - I, 90-102 (1948). 

8 -  Adam, M. C ., and W. R. Sears, "Slender Body Theory - Review and Extension," 
J. Aero. Sci.,  Vol. 20, No. 2, 85-98, February, 1953. 

9. L i ,  Ta C . H., "Coupled Potential Flow Past Inclined Bodies of Revolution 
a t  High Sgeeds, 'I Convair Astronautics, Rept . No. AZR-005 (1959). 

10. Platzer,  N. F., "Aerodynamic Pitch Damping of Slovly Oscil lating Pointed 
Bodies of Revolution i n  Linearized Supersonic Flow," George C. Marshall 
Space Flight Center, MTP-AEpiO-63-62 (1963). 

11. Dorrance, TJ. H. ,  "Nonsteady Supersonic Flot~," J. Aero Sci., Is, 501-511 
(1951). 

12. Lansing, D. L., "Velocity Potential  and Forces on Oscil lating Slender 
Bodies of Revolution i n  Supersonic Flow Expanded t o  the  F i f th  Power of 
the Frequency, NASA TN-D-1225 (1962). 

- 49 - 



13. Bond, Rb  B., and B. B. Packard, "Unsteady Aerodynamic Forces on a Slender 
Body of Revolution i n  Supersonic Flow," NASA, TN-D-859 (1961). 

14. Zartarian, G., and H. Ashley, "FOrces and Moments on Oscil lating Slender 
Wing-Body Combinations a t  Supersonic Speed," AFOGR, TN 57-386 (1957). 

15. Platzer,  M. F., "A Note on the Solution f o r  the Slowly Oscillating Body 
of Revolution i n  Supersonic Flow," George C .  Marshall Space Flight 
Center, MTP-Aero-63-28 (1963). 

16. Dzygadlo, Z., "Linearized Supersonic Flow Past a Vibrating Surface of a 
Body of Revolution," Proc. of Vibration Problems, Vol. - 2, No. 3 (8), 
265-284, Warsaw (1961). 

17. mles, J. W., The Potent ia l  Theory of Unsteady Supersonic Flow, Cambridge 
University Press (1959). 

18. Yates, J. E., "Research on the Loading of Missiles Gue t o  Atmospheric 
Turbulence and Wind Shear, Transient Aerodynamic Loading on Multi-Stage 
Missiles," Ti t le  Unclassified, Phase Report, 23 August 1961 - 1 March 
1962, Contract No. NAS8-2466, MRI Project No. 2544-P (Confidential). 

19. Yates, J. E., "Transient Aerodynamic Loading on Multi-Stage Missiles," 
Paper presented a t  the IAS National Summer Meeting, Los Angeles, 
California, June 19-22, 1962, IAS Paper No. 62-93. 

20. Blackburn, R. R . ,  See Vol. I1 of t h i s  report. 

21. Strang, W., "Transient Source, Doublet, and Vortex Solutions of the 
Linearized Equations of Supersonic Flow," Proc. Roy SOC. A, -' 202 
40-53 (1950). 

22 Erdhy i ,  Magnus, Oberhettinger, and Tricomi, Tables of In tegra l  Transforms, 
(Bateman Manuscript Project, California Ins t .  of Tech.), Vol. 1, - 5.16 - 
(47), 284, McGraw-fill (1954). 

23. Luke, Y. L., Integrals of Bessel Rmctions, 1.4.6 (8), 32, McGraw-Kill 
(1962 ) . 

24. Handbook of Mathematical FLtnctions with Formulas, Graphs, and Mathematical 
Tables, Edited by M. Abramowitz, and I. A .  Stegun, Nat. Bur. Standards, 
App.  Math. Ser ies ,  55, Chapter 10, Fornula 10.2.13 (1964). 

- 50 - 



25. See, for instance, the Princeton Series on "High Speed Aerodynamics and 
Jet Propulsion, 'I Vol. VI-, General Theory of High Speed Aerodynamics , 
Chapter 3, Part D, by M. A. Heaslet, and H. L Q ~ x ,  edited by W .  R .  
Sears (1954). 

26. Grzbner, W., and N. Hofreiter, Integraltafel, Zweiter Tei l ,  Bestilxarrte 
Integrale , 104, Springer-Verlag (1950).  

27. Liepnan, H. We, and A. Roshko, Elements of Gasdynamics, John Wiley and 
Sons (1957). 

28. Lomax, H . ,  "Indicial Aerodynamics," Chapter 6 of Vol. 11, Manual on 
Aeroelast i c i t  y, AGARD . 

- 51 - 



A P r n I X  A 

REWIEN OF THE KARMN-mORE AND ’ISIEN THEORIES 

Von Karman and Moore [l] developed a numerical method of solving for  
the steady ax ia l  flow over an arbi t rary pointed body with ax ia l  symetry.  
Tsien [g used the same basic technique f o r  the steady crossflow. 
w i l l  be reviewed b r i e f l y  here since it is needed f o r  the application of the 
gust doublet solution discussed elsewhere. 

Later 
This work 

For steady ax ia l  flow, a basic solution is  the source d is t r ibu t ion  
given by 

The upper l i m i t  r e f lec ts  the supersonic character of the solution, it being the 
equation of the Mach l ine .  By choosing f(g) = B< , where B is a constant, 
the potent ia l  becomes 

This corresponds t o  conical flow. 
along the posit ive x-axis, s tar t ing a t  the or igin.  
portional t o  the distance fromthe origin.  

It represents a series of sources dis t r ibuted 
The source strength is pro- 

A generalization of (A.2) is  eas i ly  made by s t a r t i ng  the source dis- 
t r ibu t ion  a t ,  say, x = sk . Then, 
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The corresponding velocity components are  then 

The numerical technique consists of summing a group of sui tably chosen 
solutions of this form. This i s  f ac i l i t a t ed  by Fig. 11. 

Fig. 11 - Control Points 

The f i rs t  s tep  is  t o  select  a sequence of control points, 
of the body. 
x-axis a t  the points gk . The velocit ies a t  a point, Pk , are then 

Pk , on the surface 
Through these points are drawn Mach l ines  which in te rsec t  the 
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The boundary condition 

i s  then used t o  determine the B's . I f  (A.8) is applied a t  P2 , B1 can be 
found. Then, B2 can be determined by using the boundary condition a t  Pg . 
The scheme can be continued i n  th i s  manner unti l  all the  B ' s  are known. 

?he veloci t ies  a t  intermediate points can then be eas i ly  computed. 
For a point P which l i e s  between Pk and Pk+l we have 

k-1 

i=1 
u(x,r)  = E  Bi k s h  -1 (. X - j i + l  ~ ) - cosh-l (F)] - % cosh-'C:) ( ~ . 9 )  

It i s  often more convenient t o  rearrange (A.9) and (A.lO) so t ha t  they appear as  

( A . 1 1 )  



The problem of steady crossflow may be handled i n  exactly the same 
fashion. Here, hmever, the basic potent ia l  function i s  

and the veloci t ies  are 

I n  t h i s  case, the boundary condition i s  

v - u q  = v  
Body 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

although Tsien used the slender body approximation 

v = v o  . (A.17) 

The technique presented here i s  quite general and can be applied 
Accuracy can be improved by using more 

!The manner of selecting the control points e f f i c i en t ly  i s  
r e a d i l y t o  a var ie ty  of body shapes. 
control points. 
l a rge ly  a matter of experience. 
should choose these points closer together i n  regions of rapidly changing slope. 
For the case of a shoulder, several points should be located immediately down- 
stream of the d i scon t inu i ty to  obtain the best accuracy. 

However, it can be said tha t  generally one 
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APPENDIX B 

T E  USE (3 SURFACE SOURCE DISTRIBUTIONS 

This Appendix contains a treatment of t he  axial flow over bodies of 
revolution. A dist r ibut ion of sources over the surface of the body i s  con- 
sidered rather than an axial distribution of sources as i n  the Karman-Moore 
procedure. 
see w h a t  forms the solutions t a k e .  

The steady f l o w  case is considered. This was done i n  an e f fo r t  to 

The principal  results are formulas (B.198) and (B.19b) fo r  the axial 
flow potent ia l .  
grals of t he  second kind. 
(B.19b) an attempt was made t o  sa t i s fy  the boundary conditions on the body 
surface. The resul tant  exgressions became rather unwieldy. Finally, the 
special case of a cone i n  axial flow was considered. The final result f o r  
the cone is  contained i n  Eq. (8 .28) .  
solved with a surface distribution. 

They are integral  emressions containing the e l l i p t i c  inte- 
In  the work immediately following (B.19a) and 

It is  found that the cone problem can be 

Consider the problem of axial. flow over a body of revolution, as 
shown i n  Fig. 12. 

Fig. 12 - Notation f o r  Appendix B 
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o r  

The ax ia l  flow equation i s  

while the boundary condition at the body is 

= R' 
r = R(x) 

Consider t he  basic source solution 

( B . 3 )  

The character is t ic  cone opening forward from the point x,y,z 
r = O  o r  

i s  defined by - 

The body surface i n  coordinates 5,1,5 is  

I* + c2 = R2(S)  

or 
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9 = R s i n  8 

5 = R COS 0 

where 8 = 0 i n  the  plane y = 0 . 

We want t o  construct a solution by placing sources on the  body sur- 
face rather  than along the  a x i s .  
next s tep t o  be performed. Letting 

Defining the  region of integration is  the  

y = r s i n  \t 

z = r cos $ 

w e  have, using (B.6), 

But w e  s h a l l  perform an integration on 8 symmetric i n  $ . Hence we can take 
$ = 0 i n  (B. 7 )  without loss of generality. We write 

where R = R(2) 

The solution desired can be writ ten i n  the  form 
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I I 

where the  l i m i t s  of integration are the  solutions of 

and where 

For the  special  case of t he  cone, (B.lO) yields simply 

= -1  1+$S 

6 being the  slope of the cone. 

Since the  arguments of (B.9) are even i n  8 , w e  w r i t e  

P = 2(IzO+P1) 
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(3.11) 

(B.12) 

(B.13) 



where 

Now, it can be shown t h a t  the  integral  

(B.14) 

(B.15) 

(B.16) 

where 0, =  COS-'^ t) and K here i s  the complete e l l i p t i c  integral  of t he  

f i r s t  kind. Also, we have [26] 

Using the  relat ions 

a = ( ~ 3 ) ~  - fl 
b = 2S2Rr 

(B.17) 

(B.18) 

one then obtains 
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where, i n  general, R = R ( 5 )  . 

(B.19a) 

(B .19b) 

It remains now t o  apply the  boundary conditions (B.3) a t  the surface 
of the body. 

Note tha t  the  integrals i n  (B.19a) and (B.19b) are singular; i.e., 
K(k) -+ as k -+ 1 o r  S -+ g1 . However, t he  integrals  of these terms yield 
a f i n i t e  result. 

The forms (B.19a) and (B.19b) a re  not as unappealing as they may 
The expression simplifies somewhat when the  boundary condition i s  ap- look. 

plied.  Take x and r derivatives of (B.19a) and (B.19b). After much man- 
ipulation, one obtains 

(B.20) 
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x K' 

r 

(B.21)  
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2f(5 )B2(r-R) f 4f ( 5 )B 2R [( x -s ) -f3 ( r -R ) 
4D2Rr [(x<)2+2(r-R)2)11’2 (48 2Rr  )2 

x K’ 

( B . 2 3 )  

Combining (B.20) and (B.22), and (B .2 . l )  and (B.23), the singular 
terms at S1 cancel. Furthermore, at s2 the  argument of K goes t o  zero 
and 

K(0) = rr/2 (B.24) 

Thus, combining (B.20) and (B.22) we get 
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( B . 2 5 )  

Combining ( B . 2 1 )  and ( B . 2 3 )  we get  
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r 1 

(B.26) 

- 65 - 



From the appearance of (B.25) and (B.26) ,  t h i s  method of solirtion 
does not, at  first glance, look too appealing. However, it might be instructive 
t o  look at the  solution fo r  the pure cone i n  which case the various expressions 
simplify somewhat. We evaluate (B.25) and (B.26) on the  surface of the  body 
where 

r = R(x) = 6x (B.27) 

Letting 

= (1-@262) 

and applying (B.3), we f ind 

r 7 

(B.28) 
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If f ( x )  is assumed to be linear in its argument and one makes the 
in the integral term of (B.28), the left hand side 
Thus, the boundary condition can be satisfied exactly 

transformation $ = xy 
reduces to a constant. 
for the cone. The surface source distribution has the same form as the line 
source distribution in the Karmsn-Moore procedure. 

The case of steady crossflow can be attacked in much the same manner 
as presented here. The analysis is slightly more involved, with elliptic inte- 
grals of the first and second kinds involved. 

Eue to the complexity of the surface source distribution technique, 
it is not deemed advisable to use this method unless some distinct advantage 
over the axial source distribution is apparent. 
when one considers the extension to the non-steady problem. 

This is particularly true 
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APPENDIX c 

APPLICATION OF BOND-PACKARD THEDRY 

The work of Bond and Packard [13] can be modified and extended t o  

Then, the appropriate 
yield results which are similar i n  form t o  those presented i n S e c t i o n n 1 .  
work w i l l  be reviewed b r i e f ly  here fo r  completeness. 
darnwash is inserted and the potential i s  obtained i n  closed form, for  a 
conical body. 

Their 

I n  terms of r e a l  titne, t , the potent ia l  Eq. (3.1) may be wri t ten 

Bond and Packard used the approximate boundary condition 

= W(x,t) cos e 
dr 1 r=R(x) 

or, fo r  the gust loading, 

Assuming a cos 8 dependence of (d on 8 , and taking the  Laplace 
transform on t gives 

with 
- 

= w(x,s) 
r=R(x) 

- 68 - 



where 

Transforming again on x and solving the resul t ing equation yields 

E 

$ ( P J , S )  = f ( P )  K l b )  

where 

and f ( p )  is  an a rb i t ra ry  function t o  be determined by the condition (C.3). 

- 
Since (C.3) cannot be transformed on x , the  function (d i s  

w r i t t e n  as 

The slender body approximation i s  made here by writ ing 

(C.6) Kl(m) z- 1 
ar 

This  allows the r-dependence t o  be separated out. 
(c .3 )  results i n  

Using (C. 6 )  and (C .5 ) i n  

Then, taking the Laplace transform of ( C  .7), we can solve f o r  f ( p )  t o  obtain 

f ( P )  -pj: 2 - = - e R ( i) W(5,s)dS . 
CT 
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This expression i s  placed i n  (C.5). 
fo r  Kl(or) i n  (C.5). Rather, it is possible t o  rewrite (C.5) i n  terms of the 
convolution integral  

NOW, the approximation (C.6) i s  not used 

where, t o  keep the integrand real, we require g s x-or 

Nm, 

(c. lo) 

We put (C.10) i n  (C.9), take the inverse transform of (C.9)  and interchange 
the order of integration t o  obtain 

g}d< S 

(c.11) 

cos 0 

Expressing the cosh i n  terms of exponentials, the quantity i n  
brackets may be writ ten 

S ( t - T 1 )  s ( t - T * )  

ds e + e  
2s (c. 12) 
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where 

The expression (C.12) may be immediately evaluated t o  give 

Equation (C. 11) hence becomes 

(C.13) 

(C. 14) 

Now, the quantit ies t - T l  and t - T 2  , together with the upper l i m i t ,  
are p rec i se ly the  surfaces dividing the Regions A, B, C ,  D, and E. 
t he  integration required in  (C.15) is precisely of the same form as (7.1) if 
R(s) describes a conical surface. 

Therefore, 

The result ing potent ia l  is ident ica l  t o  tha t  found i n  Section VII 
except for  a multiplying factor.  
must be multiplied by the quantity 

That is, the solution obtained from (C.15) 

The expression (C.16) approaches 1 as R '  approaches zero. I n  

However, for  the steady-state portion, the gust 

For t h i s  reason, it seems tha t  the present theory may be more 

the l i m i t  of very slender bodies, then, the results from Bond and Packard agree 
with those of Section =I. 
doublet gives the exact resul ts ,  whereas Bond and Packard's theory is  only 
approximate. 
accurate generally. 

Apparently, there is no easy way t o  relax the slender body approxima- 
t ion  inherent i n  Eq. (C.6). 
fo r  t he  Bessel function will not allow the separation accomplished i n  (C.7).  

Carrying additional terms i n  the ser ies  expansion 
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APPENDIX D 

A NUMERICAL APPROACH TO THE INDICIAL AERODYNAMICS 

The gust doublet solution given i n  Section I X  s a t i s f i e s  the exact 
steady-state boundary condition for a cone. The boundary condition i s  sa t i s f i ed  
only approximately i n  the region near the gust f ront ,  however. This approxima- 
t ion  becomes be t t e r  as the cone gets thinner - implying a slender body approxi- 
mation. 

I n  order t o  have o basis fo r  comparison of the doublet solution with 
other approximations, it is  desirable t o  have an exact solution. 
outl ines an approach t o  an exact numerical solution f o r  a cone encountering a 
s t ep  gust. 

This Appendix 

The technique t o  be used here i s  an extension and generalization of 
A series of funda- 

These solutions w i l l  have two parameters, 
tm . Each 

the Karman-Moore technique in to  a second dimension, time. 
mental solutions are  t o  be chosen. 
$, ,referring t o  a position on the x-axis, and a t i m e  origin,  
solution w i l l  have an unknown coefficient,  , associated wi th  it. Once the 
"layout" of these solutions i n  ti= and space is  chosen, the boundary condition 
can be applied a t  various positions and tirnes t o  determine the coefficients.  
Then, of course, any other desired quantit ies such as the l i f t  coefficient can 
be found by summation. 

The fundamental solution chosen should have cer ta in  properties. It 

I n  ad- 
should be time dependent, continuous, and f i n i t e  everywhere. Based on these 
premises, the gust doublet solution i s  sat isfactory for  t h i s  purpose. 
d i t ion ,  it gives the steady-state solution exactly, which w i l l  a id  i n  the 
judgment of convergence. 

The values, 3, , are  assumed t o  be equally spaced along the x-axis. 
To r e t a in  The points, 

a s  mch generali ty as i s  possible, it is  assumed tha t  a t  
doublets s t a r t  emitting. Then, a t  a time A t  l a t e r ,  another s e t  of gust 
doublets a t  the points s t a r t  emitting. This set has tm = t2 = A t  . 
This procedure is  then repeated with tg = 2At , e tc .  Thus, the coefficient 
& is associated with a gust doublet located a t  gn which s t a r t s  emitting 
a t  tm and whose Mach l i n e  passes through the point Pn on the surface. If 
there are N values of 5 and P , such tha t  PN i s  located a t  x = 1 , 
r = R' , then, 

Pn , are  then also equally spaced on the cone surface. 
t = 0 , - a l l  gust 
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See Mg. 13. 

r 
1 

% = =  n-l (1-p?’) 

tm = (m-1) At 

Mach Lines 

1 53 54 
55- - - -  - - - - - ----sN s1 5, 

Fig. 13 - Location of Doublet Distributions 

(D.3) 

The main task now is t o  solve for the & . The boundary condition 
can be applied m x n times to yie ld  rn x n equations for the coefficients. 
is desirable to develop a relatively simple set of equations, to facilitate 
their solutions. 
as control points. 
Ami  which have i < n . 

It 

For this reason, the points, 
The equation at the point, 

Pn , themselves will be used 
Pn , will involve only those 
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The t i m e  a t  which the boundary condition i s  t o  be sa t i s f i ed  m u s t  also 
If the time is  too large,  steady s t a t e  w i l l  already have been 

This, i n  turn, w i l l  lead t o  the re la t ive ly  useless result t h a t  a l l  
be determined. 
a t ta ined.  
& are zero except A 1 1  . The other extreme, t ha t  of using small times, 
leads t o  a divergence i n  the series of the & . 

The scheme presentlybeing used is  best  explained as follows: L e t  
be the time lag required fo r  the value of v - R'u a t  point P2 , due t o  

the potent ia l  a t  s1 , t o  reach z per cent of i t s  steady-state value. Like- 
wise, % i s  the time lag  associated with the value of v - R'u a t  Pn+l , 
due t o  the potential  a t  'in . The solution for the is obtained by sa t i s -  
fying the boundary conditions a t  the points and times shown i n  Table 11. 

METHOD OF D m M I N I N G  A m  

Point Time - A,, Solved For 

a, All 

A12 

A13 

p2 

*3 

. . . 
A1 N-1  

A21 

A22 

A23 

PN 

pz 
%I-1 
At + a, 
A t  + i?, 

At + 
p3 

*4 . . 

A2 N-1 

A31 

pN 
*2 e& + ,cl 

. 
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The method described above has been programmed and the program has 
been debugged. 
shows the Am f o r  a cone of unit length, slope = 0.15, a t  Hach number 2. The 
values N = 5 and z = 80 were used here, and the value of UAt was 0.2. 
The l inearized l i f t  coefficient is  sham i n  Fig. 14. 

Only a few preliminary resu l t s  have been obtained. Table I11 

The numerical solution appears t o  have the osc i l la tory  character is t ics  

It is f e l t  t ha t  more work is  required before def ini t ive resu l t s  
of a Fourier series. 
be expected. 
and conclusions can be given regarding t h i s  technique. 

If m r e  terms are  used, higher frequency osci l la t ions can 

TABLE I11 

& VALUES 

m - 
1 

2 

3 

4 

5 

6 

7 

0 

0.3C656 - 0.00070 0. WOO3 - 0.00001 

- 0.07426 - 0.17868 - 0.16574 0.02811 

0.65727 0.01799 0.26746 0.41781 

- 0.00436 - 0.12055 - 0.46862 - 1.03315 

0.66150 0.00106 0.04312 0.33331 

- 0.00026 - 0.01391 - 0.16724 - 0.53563 

0. COO06 0.00424 0. C6969 0.34352 

- 0.00001 - 0.00124 - 0.02599 - 0.17766 
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1 .S 2.0 

Fig. 14 - L i f t  Coefficient, Numerical 
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APPENDIX E 

TKE NONLINEAR PRESSURE COEFFICIENT AND REXKCED COEFFICIEN’IS 

The pressure coefficient used i n  Sections VI1 and VIII i s  linearized. 
When working wi th  the l inearized potential  theory f o r  ax ia l ly  symmetric bodies, 
it is often necessary t o  consider the e f fec t  of the nonlinear or quadratic terms 
i n  the pressure coefficient,  i n  order t o  obtain mre accurate results. 
Appendix includes a derivation of these additional terms, and a few numerical 
resu l t s  obtained w i t h  them. 

This 

. 

The exact pressure coefficient f o r  steady f low may be writ ten as [27] 

where G i s  the true velocity vector. This vector has the components 

Ox u = u -  

v = -  dr 

provided the x-axis i s  paral le l  t o  the upstream velocity.  I f  the expression 
i n  square brackets i n  ( E . l )  i s  expanded i n  a power series, one obtains 

c T )  

. 
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where terms of order higher than 2 i n  the derivatives of 5 have been neg- 
lected.  For the non-steady case, we must add the term 

2 7 Qt 

Now, the potent ia l  function, P , given here is the complete pertur- 
bation potent ia l  and includes the flmction Y given i n  Section 111, the gust 
potent ia l ,  the ax ia l  f l o w  potential, and a steady crossflow potential ,  i f  any. 
The l a t t e r  w i l l  be dropped from consideration i n  what follaws since it can be 
looked on as a special  case of the gust potent ia l .  Thus, w e  can write 

Q = QIa + QI cos e + (I cos e 
Q 

where a l l  B-dependence is  shown expl ic i t ly ,  and 

The subscripts a and g indicate ax ia l  and gust, respectively. A t e r m  such 
as #, w i l l  inzicate the derivative of $a with respect t o  r . (E.3) and 
(E.4) can now be combined t o  yield, using (E.5) ,  

1 
2 g  r 

- - (QI sin2 e + p2$2 ax 

2 
+ cos e + 2f?$ # cos e j  . gx ax gx 
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c 

. 

The end resu l t  which i s  desired here i s  not the pressure coefficient 
i t s e l f ,  but ra ther  the generalized force coefficient,  

Due t o  the integration on 
contribution t o  (E.7) are those terms involving cos 8 . Defining tha t  part, 
then, as CF , yields 

8 , the  only portions of (E .6)  which have a non-zero 

Inserting (E.8)  i n to  ( E . 7 )  gives 

The f i r s t  l i ne  of (E.9) is  the l inear  portion which has already been deal t  
with. The second l i n e  contains the quadratic t e r m  which are due t o  r ad ia l  
derivatives.  
second l ine ,  involves the ax ia l  nonlinear terms. 

The t h i r d  l i ne ,  which i s  normally neglected compared t o  the 

The remaining task,  then, is t o  i n se r t  the Eqs.  ( A . 4 ) ,  ( A S ) ,  (8.10), 
(8=11), (8.12), (8.14), (8.15), and (8.16) in to  Eq. (E.9) and perform the re- 
quired integrations.  It seems bes t  t o  evaluate these integrals  i n  the same 
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. 

fashion as was done i n  Section VIII, t h a t  is ,  as indefini te  integrals.* 
However, some of the terms do not seem t o  be integrable i n  closed form, i f  the 
most general form f o r  the integrand is  used. 
course may be had t o  numerical techniques. 

If  t h i s  is  indeed the case, re- 

For purposes of estimating the importance of these nonlinear terms, 
the case of a conical body may be considered. 
one term is required f o r  the axial flaw portion of the potent ia l .  It is also 
suf f ic ien t  t o  consider only one term of the gust potent ia l ,  namely, t ha t  term 
w i t h  sn = tm = 0 . The integrals can be evaluated i n  t h i s  case. Line 2 of 
(E .9 )  gives, i n  Region B, 

Here, w e  have sk = 0 and only 

while l i ne  3 yields 

(E.lO) 

. 

* The limits of integration t o  be used are s l i g h t l y  more involved than those 
given i n  Table I. The location of the Mach l ine  emanating from gk (ax ia l  
flow source dis t r ibut ion origin) re la t ive  t o  the other regions must be con- 
sidered. I n  addition, the second integrand i n  l i ne  2 of ( E . 9 )  actually in- 
volves the uni t  s t ep  function, 
the integration. 

H(Ut-x), which w i l l ,  i n  some cases, a l t e r  

. 
- 8 0 -  



For Regions C and D, l i n e  2 ,  

2 2 2  R' ( l + R '  ) 

+ M?v2t2(1-2Rq + 2$t2( 2x-ut ) 

(,,'2)5/2 (1+Rt2) 6 

. (E.12) 
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. 

and for line 3, 

si&-' z #R ' 2$t2 (R 12-2 ) 
2 5/2 

+ 
2(1+R' ) 

+ 1 [- 3$t2RI2 (x(l-Rt2)-U3 
2( 1+R l2  >2 6 

+ x(1+R12)2 (R1'x2+4Utx-4U2t2) 

+ Ut ( 1+R ' ) ( R ' 2x2- 2Ut x+2L?t ) 2l 
+ ut(2+8R1*+3?) 
2(1+R '2 12 , 

+ x(1+Rf2)(2-$) 11 (E.13) 
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I n  Eqs. (E.lO) and (E.13) the following special  abbreviations were used: 

. 

2mo/B 2 
A =  

- u  B =  

Z = (x-Ut)2 .t R t 2  X? 

2 - X-Ut + R '  x z =  R ' U t  

(E.14) 

(E.15) 

(E.16) 

(E.17) 

The moment and bending coefficients can also be found, although the l i f t  coef- 
f i c i e n t  is  suff ic ient  f o r  the purpose of ascertaining the e f fec t  of the non- 
l i nea r  terms. 

The steady-state solutions are  shown i n  Figs. 15 and 16. It is c l ea r  
t ha t ,  t o  obtain accurate resu l t s ,  the nonlinear terms must be included i n  the 
expressions fo r  force coefficients. me curves labeled nonlinear contain a l l  
three l ines  of Eq. (E.9). The third l i ne ,  which i s  often neglected i n  compari- 
son t o  the second l ine ,  is  important unless the Mach number i s  close t o  one. 
The nonlinear term are more important f o r  blunter cones, as is  t o  be expected. 

A cursory examination of the exact solutions of the nonlinear steady 
f l u i d  f lm equations f o r  yawed cones indicates t ha t  the inclusion of the quad- 
r a t i c  terms gives a s l i gh t  overestimate of the l i f t  coefficient.  
comparisons should be made t o  f ac i l i t a t e  estimates of accuracy and appl icabi l i ty  
of t h i s  theory. 

More detailed 

. 
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. 

2.0L 

1.5 

1.0- 

L i n e s  1 and 
Bq. (B.9) 

Linear 

- 

2 of 

0 0.1 0.2 0.3 0.4 0.5 

R '  

Fig. 15 - Steady-State Lift Coefficient for M = 1.5 (Nonlinear) 

Nonlinear 

Lines  1 and 
Eq. (E.9) 

Linear 

1 I 1 1 I 

0 0.1 0.2 0.3 0.4 0.5 

R '  

2 of 

Fig. 16 - Steady-State Lift Coefficient for M = 2.0 (Nonlinear) 
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Figure 1 7  shms the effect  of the nonlinear terms on the growth of 
lift for  a cone of uni t  length. The i n i t i a l  r a t e  of growth is decreased some- 
what, although it is stiU greater than tha t  of Miles. 
i s  due t o  the step function occurring i n  the second term of l i n e  2. It is re- 
cal led tha t  t h i s  term arose from the potent ia l  P given i n  Section 111. 

The "knee" a t  U t  = 1 

The nonlinear terms do not affect  the growth of l i f t  as much as they 
affect  the f i n a l  steady-state value of the lift coeff ic ient .  It might be we- 
ful, as an approximation, t o  use the l inear  growth of lift curve, but modified 
i n  magnitude t o  give the nonlinear steady value. 
eas ie r  t o  evaluate than the nonlinear. 

The l inear  curve is  much 
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Fig. 17 - Growth of L i f t  for 1.1 = 2.0 , R' = 0.15 (Nonlinear) 
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